The

Complete
Reference

568

C++: The Complete Reference

programming: run-time type identification (RTTI for short) and a set of four

additional casting operators. Neither of these were part of the original specification
for C++, but both were added to provide enhanced support for run-time polymorphism.
RTTI allows you to identify the type of an object during the execution of your program.
The casting operators give you safer, more controlled ways to cast. Since one of the
casting operators, dynamic_cast, relates directly to RTTI, it makes sense to discuss them
in the same chapter.

Standard C++ contains two features that help support modern, object-oriented

Run-Time Type ldentification (RTTI)

Run-time type information may be new to you because it is not found in nonpoly-
morphic languages, such as C. In nonpolymorphic languages there is no need for
run-time type information because the type of each object is known at compile time
(i.e., when the program is written). However, in polymorphic languages such as C++,
there can be situations in which the type of an object is unknown at compile time because
the precise nature of that object is not determined until the program is executed. As
explained in Chapter 17, C++ implements polymorphism through the use of class
hierarchies, virtual functions, and base-class pointers. Since base-class pointers may be
used to point to objects of the base class or any object derived from that base, it is not always
possible to know in advance what type of object will be pointed to by a base pointer at
any given moment in time. This determination must be made at run time, using run-time
type identification.

To obtain an object's type, use typeid. You must include the header <typeinfo> in
order to use typeid. Its most commonly used form is shown here:

typeid(object)

Here, object is the object whose type you will be obtaining. It may be of any type,
including the built-in types and class types that you create. typeid returns a reference
to an object of type type_info that describes the type of object.

The type_info class defines the following public members:

bool operator==(const type_info &ob);
bool operator!=(const type_info &ob);
bool before(const type_info &ob);
const char *name();

The overloaded == and != provide for the comparison of types. The before()
function returns true if the invoking object is before the object used as a parameter
in collation order. (This function is mostly for internal use only. Its return value has

Chapter 22: Run-Time Type ID and the Casting Operators

nothing to do with inheritance or class hierarchies.) The name() function returns
a pointer to the name of the type.
Here is a simple example that uses typeid.

// A simple example that uses typeid.
#include <iostream>
#include <typeinfo>
using namespace std;

class myclassl {
//
Ti

class myclass2 {
!/
Y

int main()

(
int i, 3;
fleoat £;
char *p;
myclassl obl;
myclass2 obZ2;

cout << "The type of 1 is: " << typeid(i).name();
cout << endl;
cout << "The type of f is: " << typeid(f) .name();
cout << endl;
cout << "The type of p is: " << typeid(p).name();
cout << endl;

cout << "The type of obl is: " << typeid(obl) .name();
cout << endl;
cout << "The type of ob2 is: " << typeid(ob2).name();

cout << "\n\n";

if(typeid (i) == typeid(3))
cout << "The types of i and j are the same\n";

if (typeid (i) !'= typeid(f))
cout << "The types of i and f are not the same\n";

570 C++: The Complete Reference

if(typeid(obl) !'= typeid{(obh2))
cout << "obl and ob2 are of differing types\n";

return 0O;

The output produced by this program is shown here:

The type of 1 is: int

The type of £ is: float

The type of p is: char *

The type of obl is: class myclassl
The type of ob2 is: class myclass?2

The types of i and j are the same
The types of i1 and f are not the same
obl and ob2 are of differing types

The most important use of typeid occurs when it is applied through a pointer of a
polymorphic base class. In this case, it will automatically return the tvpe of the actual
object being pointed to, which may be a base-class object or an object derived from that
base. (Remember, a base-class pointer can point to objects of the base class or of any class
derived from that base.) Thus, using typeid, vou can determine at run time the type
of the object that is being pointed to by a base-class pointer. The following program
demonstrates this principle.

// An example that uses typeid on a voclymorphic class hierarchy.

#include <iostream>

#include <typeinfo>

using namespace std;

class Mammal {

public:
virtual bool lays_eggs() (return false; } // Mammal is polymorphic
/7

}i

class Cat: public Mammal
public:
//

Chapter 22: Run-Time Type ID and the Casting Operators 571

}i

class Platypus: public Mammal {
public:
bool lays_eggs() { return true; }
/7
b

int main()

{
Mammal *p, AnyMammal;
Cat cat;
Platypus platypus;

p = &AnyMammal;
cout << "p 1s pointing to an object of type ";
cout << typeid(*p).name() << endl;

p = &cat;
cout << "p is pointing to an object of type ";
cout << typeid(*p).name() << endl;

p = &platypus;
cout << "p 1s pointing to an object of type ";

cout << typeid(*p).name() << endl;

return 0;

The output produced by this program is shown here:

p is pointing to an object of type class Mammal
p is pointing to an obiect of type class Cat
p is pointing to an object of type class Platypus

As explained, when typeid is applied to a base-class pointer of a polymorphic type,
the type of object pointed to will be determined at run time, as shown by the output
produced by the program.

In all cases, when typeid is applied to a pointer of a nonpolymorphic class hierarchy,
then the base type of the pointer is obtained. That is, no determination of what that
pointer is actually pointing to is made. For example, comment out the virtual keyword

C++: The Complete Reference

before the function lays_eggs() in Mammal and then compile and run the program.
You will see the following output.

p is pointing to an object of type class Mammal
p is pointing to an object of type class Mammal
p is pointing to an object of type class Mammal

Since Mammal is no longer a polymorphic class, the type of each object will be
Mammal because that is the type of the pointer.

Since typeid is commonly applied to a dereferenced pointer (i.e., one to which the *
operator has been applied), a special exception has been created to handle the situation
in which the pointer being dereferenced is null. In this case, typeid throws bad_typeid.

References to an object of a polymorphic class hierarchy work the same as pointers.
When typeid is applied to a reference to an object of a polymorphic class, it will return
the type of the object actually being referred to, which may be of a derived type. The
circumstance where you will most often make use of this feature is when objects are
passed to functions by reference. For example, in the following program, the function
WhatMammal() deciares a reference parameter to objects of type Mammal. This
means that WhatMammal() can be passed references to objects of type Mammal
or any class derived from Mammal. When the typeid operator is applied to this
parameter, it returns the actual type of the object being passed.

// Use a reference with typeid.
#include <iostream>
#include <typeinfo>
using namespace std;

class Mammal {

public:
virtual bool lays_eggs() { return false; } // Mammal is polymorphic
//

Y

class Cat: public Mammal ({
public:

//
}i

class Platypus: public Mammal ({
public:

Chapter 22: Run-Time Type 1D and the Casting Operators - 573

bool lays_eggs() { return true; }
//
Y

// Demonstrate typeid with a reference parameter.
void WhatMammal (Mammal &cb)
{
cout << '"ob is referencing an object of type ";
cout << typeid(ob).name() << endl;

int main()

(
Mammal AriyMammal;
Cat cat;
Platypus platypus;

WhatMammal (AnyMammal) ;
WhatMammal (cat) ;
WhatMammal (platypus) ;

return 0;

The output produced by this program is shown here:

ob is referencing an object of type class Mammal
ob is referencing an object of type class Cat
ob is referencing an object of type class Platypus

There is a second form of typeid that takes a type name as its argument. This form
is shown here:

typeid(type-name)

For example, the following statement is perfectly acceptable:

g cout << typeid(int) .name() ;

574

C++: The Complete Reference

The main use of this form of typeid is to obtain a type_info object that describes the
specified type so that it can be used in a type comparison statement. For example, this
form of WhatMammal() reports that cats don't like water:

void WhatMammal (Mammal &ob)
{
cout << "ob is referencing an object of type ";
cout << typeid(ob).name() << endl;
if (typeid(ob) == typeid(Cat))
cout << "Cats dor't like water.\n";

——

A Simple Application of Run-Time Type ID
The following program hints at the power of RTTI. In the program, the function called
factory() creates instances of various types of objects derived from the class Mammal.
(A function that produces objects is sometimes called an object factory.) The specific
type of object created is determined by the outcome of a call to rand(), C++'s random
number generator. Thus, there is no way to know in advance what type of object will
be generated. The program creates 10 objects and counts the number of each type of
mammual. Since any type of mammal may be generated by a call to factory(), the program relies
upon typeid to determine which type of object has actually been made.

// Demonstrating run-time type id.
#include <iostream>
using namespace std;

class Mammal {

public:
virtual bool lays_eggs() { return false; } // Mammal is polymorphic
/7

}i

class Cat: public Mammal {
public:

//
}:

class Platypus: public Mammal {
public:
bool lays_eggs() { return true; }
//

Chapter 22: Run-Time Type ID and the Casting Operators

}s

class Dog: public Mammal ¢
public:
/7

Y

// A factory for obljects derived from Mammal .

Mammal *factory!()

{
switchiranc() % 3)
case 0: return new Dog;
case l: return new Cat;
case 2: return new Platvpus;
}
return 0;
}

int main{)

{
Mammal *ptr; // pointer to bhase class
int 1;

int ¢=0, d=0, p=0;

/

// generate and count objects

for(i=0; i<10; i++) {

ptr = factory!(); // generate an object

cout << "Object is " << typeld(*ptr).name();

cout << endl;

// count it

if (typeid(*ptr) == typeid(Dog)) d++;
if (typeid(*ptr) == typeid(Cat)) c++;
if(typeid(*ptr) == typeid(Platyous)) p++;

cout << endl;
cout << "Animals generated:\n";
cout << " Dogs: " << d << endl;

cout << " Cats. " << ¢ << endi;

575

C++: The Complete Reference

cout << " Platypuses: " << p << endl;

return O;

Sample output is shown here.

Object is class Platypus
Object is class Platypus
Object is class Cat
Object is class Cat
Object is class Platypus
Object is class Cat
Object is class Dog
Object is class Dog
Object is class Cat
Object is class Platypus

Animals generated:
Dogs: 2
Cats: 4
Platypuses: 4

typeid Can Be Applied to Template Classes

The typeid operator can be applied to template classes. The type of an object that is an
instance of a template class is in part determined by what data is used for its generic
data when the object is instantiated. Two instances of the same template class that are
created using different data are therefore different types. Here is a simple example:

// Using typeid with templates.
#include <iostream>
using namespace std;

template <class T> class myclass {
T a;

public:
myclass(T 1) { a = 1; }
!/

Y

Chapter 22: Run-Time Type ID and the Casting Operators 577

int main()
P

myclass<int> 0l1(10), 02(9);
myclass<double> 03{(7.2);

cout << "Type of ol is ";
cout << typeid(ol).name() << endl;

cout << "Type of 02 is *;
cout << typeid{o2).name() << endl;

cout << "Type of 03 is *;
cout << typeid(o3) .name() << endl;

cout << endl;

if (typeid(ol) == typeid(o2))
cout << "ol and 02 are the same type\n';

if (typeid(ol) == typeid(o3))
cout << "Error\n";
else
cout << "ol and 03 are different types\n";

return 0;

The output produced by this program is shown here.

% Type of ol is class myclass<int>
Type of 02 is class myclass<int>

Type of 03 is class myclass<double>
ol and 02 are the same type

ol and 03 are different types

As you can see, even though two objects are of the same template class type, if their
parameterized data does not match, they are not equivalent types. In the program,
ol is of type myclass<int> and 03 is of type myclass<double>. Thus, they are of
different types. '

578

C++: The Complete Reference

Run-time type identification is not something that every program will use. However, when
you are working with polymorphic types, it allows you to know what type of object is
being operated upon in any given situation.

The Casting Operators

C-++ defines five casting operators. The first is the traditional-style cast inherited from
C. The remaining four were added a few years ago. They are dynamic_cast, const_cast,
reinterpret_cast, and static_cast. These operators give you additional control over how
casting takes place.

dynamic_cast

Perhaps the most important of the new casting operators is dynamic_cast. The
dynamic_cast performs a run-time cast that verifies the validity of a cast. If the cast
is invalid at the time dynamic_cast is executed, then the cast fails. The general form
of dynamic_cast is shown here:

dynamic_cast<target-tupe> (expr)

Here, target-type specifies the target type of the cast, and expr is the expression being
cast into the new type. The target type must be a pointer or reference type, and the
expression being cast must evaluate to a pointer or reference. Thus, dynamic_cast may
be used to cast one type of pointer into another or one type of reference into another.

The purpose of dynamic_cast is to perform casts on polymorphic types. For example,
given two polymorphic classes B and D, with D derived from B, a dynamic_cast can
always cast a D* pointer into a B* pointer. This is because a base pointer can always point
to a derived object. But a dynamic_cast can cast a B* pointer into a D* pointer only if
the object being pointed to actually is a D object. In general, dynamic_cast will succeed
if the pointer (or reference) being cast is a pointer (or reference) to either an object of the
target type or an object derived from the target type. Otherwise, the cast will fail.If the cast
fails, then dynamic_cast evaluates to null if the cast involves pointers. If a dynamic_cast
on reference types fails, a bad_cast exception is thrown.

Here is a simple example. Assume that Base is a polymorphic class and that
Derived is derived from Base.

Base *bp, b_ob;
Derived *dp, d_ob;

bp = &d_ob; // base pointer points to Derived object

Chapter 22: Run-Time Type 1D and the Casting Operators

dp - dynamic_cast<Derived *> (bp); // cast to derived pointer OK

1f(dp) cout << "Cast OK";

Here, the cast from the base pointer bp to the derived pointer dp works because bp is
actually pointing to a Derived object. Thus, this fragment displays Cast OK. But in the
next fragment, the cast fails because bp is pointing to a Base object and it is illegal to
cast a base object into a derived object.

bp = &b_ob; / base pointer poin:ts to Base object
dp = dynamic_cast<Derived *> (bp); // error

"

if(tdp) coLt << "Cast Fails";

Because the cast fails, this fragment displays Cast Fails.
The following program demonstrates the various situations that dynamic_cast can
handle.

Demcnstrate dynamic_cast.
finclude <iostream>

using namespace std;

class Base {

vublic:
virtual void f() { cout << "Inside Base\n"; ;
/7

class Derived : public Base {
public:
void f£() { cout << "Ingside Derivea\n"; }

8

int main()
{
Base *bp, b_ob;

Derived =dp, d_ob;

dp = dynamic_cast<Derived *> (&d_ob);
1f(dpy |

cout << "Cast from Derived * to Derived * OK.\n";
dp->£(,;

} else

579

580 C++: The Complete Reference

cout << "Error\n";
cout << endl;

bp = dynamic_cast<Base *> (&d_ob);

if (bp) {

cout << "Cast from Derived * to Base * OK.\n";
bp->£();

else

—

cout << "Error\n";

cout << endl;

bp = dynamic_cast<Base *> (&b_ob);

if(bp) {
cout << "Cast from Base * to Base * OK.\n";
bp->f () ;

} else
cout << "Error\n";

cout << endl;

dp = dynamic_cast<Derived *> (&b_ob);
if (dp)
cout << "Error\n";
else
cout << "Cast from Base * to Derived * not OK.\n";

cout << endl;

bp = &d_ob; // bp points to Derived object
dp = dynamic_cast<Berived *> (bp);
if(dp) {
cout << "Casting bp to a Derived * OK\n" <<
"because bp is really pointing\n" <<
"to a Derived object.\n";
dp->£f () ;
} else
cout << "Error\n";

cout << endl;

Chapter 22: Run-Time Type ID and the Casting Operators

bp = &b_ob; // bp points to Base object
dp = dynamic_cast<Derived *> (bp);
if (dp)
cout << "Error";
else {
cout << "Now casting bp to a Derived *\n" <<
"1s not OK because bp is really \n" <<
"pointing tc a Base object.\n";

cout << endl;

dp = &d_ob; // dp points to Derived object
bp = dynamic_cast<Base *> (dp);
if (bp) {
cout << "Casting dp to a Base * is OK.\n";
bp->£(};
} else

cout << "Error\n";

return 0;

The program produces the following output:

Cast from Derived * to Derived * OK.
Inside Derived

Cast from Cerived * to Base * OK.
Inside Derived

Cast from BRase * to Base * OK.
Inside Base

Cast from Ease * to Derived * not OK.

Casting bp to a Derived * OK
because bp 1s really pointing
to a Derived object.

Inside Derived

582

C++: The Complete Reference

Now casting bp to & Derived *

is not OK because tp is really
pointing to a Base object.

Casting dp to a Base * is OK.
Inside Derived

Replacing typeid with dynamic_cast
The dynamic_cast operator can sometimes be used instead of typeid in certain cases.
For example, again assume that Base is a polymorphic base class for Derived. The
following fragment will assign dp the address of the object pointed to by bp if and
only if the object really is a Derived object.

Base *bp;

Derived *dp;

/7

if(typeid(*bp) == typeid(Derived)) dp = (Derived *) bp;

In this case, a traditional-style cast is used to actually perform the cast. This is safe
because the if statement checks the legality of the cast using typeid before the cast
actually occurs. However, a better way to accomplish this is to replace the typeid
operators and if statement with this dynamic_cast.

il

8 ;‘ dp = dynamic_cast<Derived *> (bp);

Since dynamic_cast succeeds only if the object being cast is either an object of the
target type or an object derived from the target type, after this statement executes dp
will contain either a null or a pointer to an object of type Derived. Since dynamic_cast
succeeds only if the cast is legal, it can simplify the logic in certain situations. The
following program illustrates how a dynamic_cast can be used to replace typeid. It
performs the same set of operations twice—first with typeid, then using dynamic_cast.

// Use dynamic_cast to replace typeid.
#include <iostream»
#include <typeinfo>

using namespace std;

Base {

{

b

+i

int main(

Chapter 22: Run-Time Type ID and the Casting Operators

virtual void f£{) {}

class Derived : public Base ({
public:

void derivedOnly () {
cout << "Is a Derived Object.\n";

Base *bp, b_ob;
Derived *dp, d_ob;

// ****k*****************‘k*************

// use typeid

/// **‘k**‘k******'k‘k**‘k**************‘k****

bp = &b_ob;
if (typeid(*bp) == typeid(Derived)) <
dp = (Derived *) bp;

dp->derivedOnly () ;

}
else

cout << "Cast from Base to Derived failed.

bp = &d_ob;

if (typeid(*bp) == typeid(Derived)) {
dp = (Derived *) bp;
dp->derivedOnly () ;

}

else
cout << "Error, cast should work!\n";

// ************‘k************k*‘k***‘k****

// use dynamic_cast

/// ***‘k********************************
bp = &b_ob;

dp = dynamic_cast<Derived *> (bp) ;

if (dp) dp->derivedOnly{);

else

cout << "Cast from Base tc Derived failed.

\n";

\n";

583

584 C++: The Complete Reference

bp = &d ob;
dp = dynamic_cast<Derived *> (bp,;
if(dp) dp->derivedonly () ;
else
cout << "Error, cast shcould work!\n";

return 0;

As you can see, the use of dynamic_cast simplifies the logic required to cast a base
pointer into a derived pointer. The output from the program is shown here:

Cast from Base to Derived failed.
Is a Derived Object.
Cast from Base to Derived failed.
Is a Derived Object.

Using dynamic_cast with Template Classes

The dynamic_cast operator can also be used with template classes. For example,

// Demonstrate dynamic_cast on template classes.
#include <iostream>
using namespace std;

template <class T> class Num {
protected:
T val;
public:
Num(T x) { val = =; }
virtual T getval() { return val; }
7/

-

template <class T> class SgrNum : public Num<T> {
public:

SArNum (T x) : Num<T>(x) { }

T getval() { returr val * val; }

i

Chapter 22: Run-Time Type ID and the Casting Operators 585

int main{()

{
Num<int> *bp, numInt_ob{2);
SgrNum<int> *dp, sqrInt_ob(3);
Num<double> numDouble_ob(3.3);

bp = dynamic_cast<Num<int> *> (&sqgrInt_ob);

if (bp) {
cout << "Cast from SgrNum<int>* to Num<int>* OK.\n";
cout << "Value is " << bp->getval() << endl;

} else

cout << "Error\n";
cout << endl;

dp = dynamic_cast<SgrNum<int> *> (&numInt_ob);
if(dp)

cout << "Error\n";
else ({

cout << "Cast from Num<int>* to SgrNum<int>* not OK.\n";
cout << "Can't cast a pointer to a base object into\n";
cout << "a pointer to a derived object.\n";

}

cout << endl;

bp = dynamic_cast<Num<int> *> (&numDouble_ob) ;

1f (bp)
cout << "Error\n";

else
cout << "Can't cast from Num<double>* to Num<int>*.\n";
cout << "These are two different types.\n";

return 0;

The output from this program is shown here:

Cast from SgrNum<int>* to Num<int>* OK.
Value is 9

Cast from Num<int>* to SgrNum<int>* not OK.

C++: The Complete Reference

Can't cast a pointer to a base object into
a pointer to a derived object.

Can't cast from Nun<double>* to Num<int>*.

These are two different types.

A key point illustrated by this example is that it is not possible to use dynamic_cast
to cast a pointer to one type of template instantiation into a pointer to another type of
instance. Remember, the precise type of an object of a template class is determined by
the type of data used to create an instance of the template. Thus, Num<double> and
Numc<int> are two different types.

const_cast

The const_cast operator is used to explicitly override const and/or volatile in a cast.
The target type must be the same as the source type except for the alteration of its const
or volatile attributes. The most common use of const_cast is to remove const-ness. The
general form of const_cast is shown here.

const_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast into
the new type.
The following program demonstrates const_cast.

// Demonstrate const_cast.
#include <iostream>
using namespace std;

void sgrval (const int *val)
{

int *p;

// cast away const-ness.
p = const_cast<int *> (val);

*p = *val * *val; // now, modify object through v

int main{()

Chapter 22: Run-Time Type ID and the Casting Operators -~ 587

int x = 10;
cout << "x before call: " << x << endl;
sgrval (&X) ;

cout << "x after call: " << x << endl;

return 0;

The output produced by this program is shown here:

x before call: 10
x after call: 100

As you can see, x was modified by sqrval() even though the parameter to sqrval() was
specified as a const pointer.

const_cast can also be used to cast away const-ness from a const reference. For
example, here is the preceding program reworked so that the value being squared is
passed as a const reference.

// Use const_cast on a const reference.
#include <iostream>
using namespace std;

void sgrval (const int &val)

{
// cast away const on val
const_cast<int &> (val) = val * val;

int main()

{
int x = 10;

cout << "x before call: " << x << endl;
sgrval (x) ;
cout << "x after call: " << x << endl;

return 0O;

588 C++: The Complete Reference

This program produces the same output as before. Again, it works only because the
const_cast temporarily removes the const attribute from val, allowing it to be used to
assign a new value to the calling argument (in this case, x).

It must be stressed that the use of const_cast to cast way const-ness is a potentially
dangerous feature. Use it with care.

One other point: Only const_cast can cast away const-ness. That is, neither
dynamic_cast, static_cast nor reinterpret_cast can alter the const-ness of an object.

static_cast

The static_cast operator performs a nonpolymorphic cast. It can be used for any
standard conversion. No run-time checks are performed. Its general form is

static_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast into
the new type.

The static_cast operator is essentially a substitute for the original cast operator. It
simply performs a nonpolymorphic cast. For example, the following casts an int value
into a double.

// Use static_cast.
#include <iostream>
uging namespace std;

int main()
{

int 1i;

for(i=0; 1i<10; i++)
cout << static_cast<double> (i) / 3 << " ";

return 0;

reinterpret_cast

The reinterpret_cast operator converts one type into a fundamentally different type.
For example, it can change a pointer into an integer and an integer into a pointer. It
can also be used for casting inherently incompatible pointer types. Its general form is

reinterpret_cast<type> (expr)

Chapter 22: Run-Time Type ID and the Casting Operators

Here, type specifies the target type of the cast, and expr is the expression being cast into
the new type.

The following program demonstrates the use of reinterpret_cast:

// An example that uses reinterpret_cast.
#include <iostream>
using namespace std;

int main{()

{

int 1i;
char *p = "This is a string";
1 = reinterpret_cast<int> (p); // cast pointer to integer

cout << 1i;

return 0O;

Here, reinterpret_cast converts the pointer p into an integer. This conversion represents
a fundamental type change and is a good use of reinterpret_cast.

